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Abstract

The basic equations of a fully nonlinear theory of electromagnetically conducting flat plates carrying an electric cur-
rent and exposed to a magnetic field of arbitrary orientation are derived. The relevant equations have been obtained by
considering that both the elastic and electromagnetic media are homogeneous and isotropic. The geometrical nonlin-
earities are considered in the von-Kdrman sense, and the soft ferromagnetic material of the plate is assumed to feature
negligible hysteretic losses. Based on the electromagnetic and elastokinetic field equations, by using the standard aver-
aging methods, the 3-D coupled problem is reduced to an equivalent 2-D one, appropriate to the theory of plates.
Having in view that the elastic structures carrying an electric current are prone to buckling, by using the presently devel-
oped theory, the associated problems of buckling and postbuckling are investigated. In this context, the problem of the
electrical current inducing the buckling instability of the plate, and its influence on the postbuckling behavior are
analyzed. In the same context, the problem of the natural frequency-electrical current interaction of flat plates, as influ-
enced by a magnetic field is also addressed.
© 2005 Published by Elsevier Ltd.
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1. Introduction

A new trend for a better understanding of the static and dynamic response of thin-walled elastic struc-
tures subjected to the simultaneous action of mechanical, thermal, electrical, magnetical and optical fields
has been manifested in the last years.
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Nomenclature

A oscillation amplitude; stretching stiffness

B, By, b magnetic induction vector, the primary and disturbance counterpart, respectively
b;—b;  dimensionless coefficients

¢, ¢, speed of light in the elastic medium and the free-space, respectively

D bending stiffness

eyp strain components

E, Eg, e electric field vector, its primary and the disturbed part, respectively
E Young’s modulus of the plate material

fL, ff/l Lorentz and magnetization ponderomotive force vectors, respectively
H, Hy, h magnetic field vector, its primary and disturbed counterpart, respectively
H dimensionless magnetic field intensity
2h plate thickness
J, Jo, j conduction current-density vector, its primary and disturbance counterpart, respectively
J,, J  electric current vector at the surface of the body, dimensionless current
24, panel width
M magnetization vector
n, N, n;, N; unit vectors of the external normal and its components, related to the underformed and
deformed surface, respectively
Sy second Piola—Kirchhoff stress tensor
Ty, (Ty). magnetic Maxwell’s stress tensor counterparts in the plate and in vacuum, respectively
Vi, v;  3-D and 2-D displacement components
X; Cartesian orthogonal coordinates
0 Kronecker delta
dimensionless displacement
, Ag Laplace operators, 3-D and 2-D, respectively
coefficient of electroconductivity
potential function
shape function
Poisson’s ratio
0o mass density of the plate material
w, 2, Q, fundamental frequency, dimensionless, and the reference one, respectively
T dimensionless time
¥ = [t — 1 magnetic susceptibility

QF a()/ox;

=€ >=

Such an understanding can lead to truly integrated structures, able to perform multiple structural, as
well as electro-magnetic, electro-mechanical and mechanical-optical functions. The structures featuring
multiple functionalities are likely to revolutionize the concepts used in the design of next generation of aero-
space vehicles. In contrast to three-dimensional problems related to the electrodynamics of continua (see
e.g., Landau and Lifshitz, 1984; Moon, 1970, 1984; Maugin, 1988; Eringen and Maugin, 1990), there are
few available studies addressing the response of electromagnetically conducting thin-walled structures car-
rying an electric current and incorporating the electromagnetic and geometric nonlinearities. In some spe-
cial contexts, the nonlinear magnetoelastic problems have been considered by Maugin et al. (1992),
Bagdasaryan and Danoyan (1985) and Hasanyan et al. (2001).
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The few available investigations in this area have been mainly restricted to the linear problems for elastic
rods and plates (see e.g., Leontovich and Shafranor, 1961; Dolbin and Morozov, 1966; Chattopadhyay and
Moon, 1975; Chattopadhyay, 1979; Wolfe, 1983, Kazarian, 1985; Ambartsumyan and Belubekyan, 1991).
However, to the best of the author’s knowledge, there are no investigations related to the nonlinear theory
of electromagnetically conducting flat panels carrying an electric current.

Having in view the susceptibility to buckling of flexible structures carrying an electric current, the non-
linear approach of the problem would enable, among others, to determine the electrical carrying capacity of
flat plates, in general, and of plate-strips, in particular.

Moreover, the present approach enables one to determine the frequency—electrical current interaction, the
implications, in this context, of an external magnetic field of prescribed intensity and orientation, and also
the buckling and postbuckling of the plate under the action of the magnetic field and of the electric current.

2. Basic assumptions

We consider an electromagnetically conducting elastic plate of uniform thickness 2/, subjected to
mechanical loads. The points of the non-deformed plate are referred to the Cartesian system of 3-D coor-
dinates x;, where (xi,x,) are the in-plane coordinates associated with the points of the underformed mid-
plane of the plate, while x3(|x3| < /) is the thickness coordinate. We assume also the existence of an electric
current Jo((Jo)1,(Jo)2,(Jo)3), (Jo); being the components of J, along the directions Xx;.

It is also assumed that the magnetic field Hy, inside the plate is known and is determined by solving
Maxwell’s equations in conjunction with the boundary conditions at the interfaces between the plate and
the vacuum. As a result of both J, and Hy, an induced magnetic field B, is generated. We assume that
the plate is made up of a magnetosoft ferromagnetic material, featuring linear characteristics. We also as-
sume that the plate is thin, and as a result, Kirchhoff hypothesis can be applied in its modeling. For some
developments related to the theory of soft ferromagnetic solids, see Pao and Yeh (1973) and Verma and
Singh (1984). In the approach of the problem, both the geometrical and electromagnetic nonlinearities

are included. At the same time, the magnetic field H is represented as Hy = [(H,), + x3 (III +)]ix, where iy
(k=1, 2, 3) is the unit vector in the x,-th direction, and throughout the paper, unless otherwise stated,
the repetition of an index implies the summation over that index. In this sense, the Latin indices range from
1 to 3 while the Greek ones range from 1 to 2. In addition, unless otherwise stated, partial differentiation is
denoted by a comma, (-),; = 0(-)/0x;, whereas the overdots denote time derivatives.

3. Field equations

In order to be reasonably self-contained, the dynamic electromagnetic equations as well as the equations
of motion of the 3-D elastic medium will be displayed next.

In the absence of electrical free charges, the relevant equations expressed in Lorentz-Heaviside system of
units (see e.g., Landau and Lifshitz, 1984; Eringen and Maugin, 1990), are

curlE = _1cB = Faraday’s Law (1)
c Ot
1
curlH = —J = Ampere’s Law (2)
C
divB=0 (3)

[Sj(0ir + Vi_,)]7 ;T fi=po V= Equations of motion of a geometrically nonlinear 3-D elastic

body in Lagrangian description. (4)
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In Eq. (4) §; is the Kronecker delta, S;(=S};) are the components of the second Piola-Kirchhoff stress
tensor, V (V, V5, V3) is the displacement vector, where V; are its 3-D components, while f; are the compo-
nents of effective ponderomotive force vector f (f1,/>,f3) per unit volume. The expression of f resulting as
superposition of Lorentz and magnetization effects is

f=f" ™ (5)
where
1
f*=-(JxB) and fM=M-VH (6a,b)
C
For a linear ferromagnetic, the constitutive equations are:
B = iH;
1 oV .
J=0lE+- 5 " B | = Generalized Ohm’s Law (7a—)
C
M=yH

where [ is the magnetic permeability and y(= it — 1) is the magnetic susceptibility. As mentioned in
Knoepfel (2000) and Moon (1984), for many materials (such as for the paramagnetic ones) the susceptibi-
lity y is extremely small, but for the soft ferromagnetic ones (such as steel) y can reach values of 10°.

Egs. (1)(5), (6a), (b) describe the interaction between the elastic and electromagnetic fields. In these
equations E and H are the elastic and magnetic field vectors, respectively, J is the conduction current—
density vector, B is the magnetic induction vector, M is the magnetization vector, ¢ is the speed of electro-
magnetic waves in the respective medium, ¢ denotes the electrical conductivity, that for the isotropic media
considered here, is a scalar, while pg is the mass per unit volume of the elastic solid in the underformed
(reference) state.

For elastic isotropic plates modeled within the Kirchhoff hypothesis, the pertinent constitutive equations
relating the second Piola—Kirchhoff stress components with those of the Lagrangian strain tensor e; are
given by

E
S = —‘}2(611 +ven), Sn= _—v2(€22 +veir), Sip=2Gep (8a—c)

1-— 1
Herein E (G(=E/[2(1 + v)]) and v denote the Young’s modulus, shear modulus and Poisson’s ratio respec-
tively. Within the Lagrangian description and consistent with von-Karman’s assumption, the 3-D strain
components expressed in terms of the 3-D displacement components V, and V3, in the absence of the initial
geometric imperfections are

260(/)’ = Vou/} + Vbﬁaz + V3,o< Vlﬁ (9)

The previously displayed equations are associated with the inner domain occupied by the plate. For the
domain outside the plate, (considered to coincide with the vacuum), the equations governing the electro-
magnetic field are given by

1 oH,
c, Ot

curlH, =0, divH, =0, curlE, =— (10a—c)
It can readily be seen that by virtue of (10b) and of the identity divcurl E, = 0, Eq. (10c) is identically ful-
filled, and as such, it can be discarded.

In these equations the index “e’” identifies the quantities associated to the outer plate domain (i.e. of the
vacuum). For simple media ¢ = ¢,, see Dragos (1975).
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Finally, towards establishing the governing equations of electromagnetic conducting plates, it should be
recalled (see e.g., Maugin, 1988; Knoepfel, 2000; Pao and Yeh, 1973), that in a magnetic field the forces that
are induced by it act on the external surfaces of the conducting body as well. These forces can be expressed
in terms of the Maxwell’s stress tensor defined by

1

where H; and B; are the components of the magnetic and magnetic induction vectors, respectively.

At the external surfaces of the plate that separate two media with different electromagnetic properties,
the field vectors experience discontinuities that are specified by a number of boundary conditions. Restrict-
ing ourselves to the conditions that will be required in the next developments, in the absence of surface den-
sities of current, these conditions are:

Nx[E-E]=0
N x [H-H,] =J; (12a—c)
N-B-B,]=0

Herein N is the unit vector of the external normal to the deformed plate bounding surface. In addition, J; is
the electric current vector at the surface of the body.

From the previously displayed condition one can conclude that the tangential components of E and the
normal components of B are continuous at the medium interfaces.

As concerns condition (12b), this states that the jump of tangential components of H is equal to the sur-
face current density in the direction perpendicular to tangential directions to the surface. Egs. (12) and (7a)
considered in conjunction with the fact, that in general j is not equal to (i),, show, that the normal com-
ponents of magnetic field are discontinuous on the boundary surface.

In the same context, additional boundary conditions should be fulfilled on the bounding surfaces of the
plate (see Pao and Yeh, 1973; Verma and Singh, 1984; Moon, 1970; Ambartsumyan et al., 1977; Bagdasar-
yan, 1983, 1999). These are expressed as,

nilSy + 8, Vir + Tyl = F; + ni(Ty), (13)

where n; are the components of the external unit vector n, while F; are the components of the surface load
vector F of mechanical origin. Boundary conditions (13) supplement the ones provided by Egs. (12a-c).

From the above displayed equations of the magnetizable elastic body we can realize their complexity.
Apart from the fact that in some equations, such as in Egs. (4), (5) and (9) there are nonlinear terms that
considerably complicate the approach of the problem, in addition, the electromagnetic equations are for-
mulated in an Eulerian description. At this point one should distinguish between the structural nonlinear-
ities involved in Egs. (4) and (9), where a Lagrangian description was used, and the ones of purely
electromagnetic origin involved in Egs. (6a,b) and (11), and those of mixed nature, involved in the Ohm’s
law, (Eq. 7b) and the boundary conditions (12). In the forthcoming treatment both types of nonlinearities
will be retained.

4. Unified description of the field equations

The formulation of electromagnetic equations in Eulerian description creates inextricable problems.
Among others, in the formulation, the boundary conditions are expressed in the deformed configuration
that is not known a priori. In contrast to this, the equations of the geometrically nonlinear theory of elastic
bodies are used in a Lagrangian description.
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For all these reasons it is imperative of converting the electromagnetic equations to a Lagrangian
description. To this end, the concept of the reference state advanced, for example, within the Lagrangian
formulation of geometrically nonlinear shell theory, see e.g., Librescu (1975), will be extended to the elec-
tromagnetic equations and the related boundary conditions, as well.

The same procedure was used, essentially in a number of papers devoted to electromagnetic elastic solids
(see e.g., Hutter and Pao, 1974).

Along this line the electromagnetic field quantities in the actual configuration are decomposed into two
parts as:

E=E,+e, H=Hy+h, B=By+b; J=Jy+i (14a—c)

In these equations, e(=e(xy,x3,Xx3,%)), h(=h(x(, x5, x3,7)), b(b = (x1,x2,x3,7)) and j(=j(xy,x2,x3) are the
disturbances of the primary electromagnetic field quantities, Eo(=Eg(x1,x2,x3), Ho(=Hg(x1, X2, x3))
Bo(=By(x1, x2,x3)) and Jo(=Jo(x1, x5, x3)), respectively. Whereas the former quantities are intended to ac-
count for the effect of deformation, the latter ones are defined in the reference state configuration, and
for this reason, are considered to be associated to the “rigid body state’ (see Hutter and Pao, 1974). Need-
less to say, the same decomposition of field variables can be used to linearize the electromagnetic equations.
In such a case, one assumes that the square of disturbance quantities are second order terms that are neg-
ligibly small when compared with their undisturbed primary electromagnetic field counterparts. However,
in the future we will keep such terms in Lorentz’s force expression.

For the problem at hand, E, is a zero quantity, and only the induced electric field vector is different of
zero. As a result, (see Hutter and Pao, 1974; Librescu, 1977), for perfectly conducting electromagnetic med-
ia, implying ¢ — oo, from Eq. (7b) considered in conjunction with Eq. (14a,c), and the fact that B is time
independent, one obtains

10

On the basis of the Faraday’s Law, Eq. (1), considered in conjunction with (7a) and (14b) one obtains

b = curl(V x By) (16)
while in view of (14b), Ampere’s Law, Eq. (2), yields
Jo=ccurlHy and j=ccurlh (17)

By virtue of Egs. (16) and (7c), in conjunction with the previously described procedure, one can represent
the 3-D ponderomotive forces as the superposition of Lorentz’s type forces

1 . .
= 2 eul(Jo)bi + 73 (Bo)y + J;bi + (Jo)(Bo)y] (18a)
and of those due to the magnetization as
SN = (i = D{(Ho)ihis + hi(Ho) i + hihis + (Ho) o (Ho) i} (18b)

where & is the 3-D alternating symbol.
In conjunction with this expression we also have

by = fthi;  (Bo), = ji(Ho); (19a,b)

For nonmagnetizable solids, including the free space, it = 1, and as a result, fM = 0. By using (14) in
conjunction with (19), the Maxwell’s stress tensor, Eq. (11) can be represented in terms of (Hy); and #;.

Needless to say, the components of the Maxwell’s stress tensor (7). in the free space are obtained from
(11), by replacing h; — (h,). and jt — 1.
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5. Reduction of 3-D magnetoelastic equations to the 2-D plate counterpart

The previously displayed equations of the 3-D magnetizable elastic conductors will be reduced to their 2-
D counterparts associated with a flat plate.

The plate under consideration is referred to an orthogonal 3-D Cartesian coordinate system, x;, the coor-
dinates x,, (o = 1, 2) coinciding with the in-plane coordinates of its mid-plane, x3 being the thickness coor-
dinate (—/4 < x3 < h), x3 =0 defining the mid- plane of the plate. The procedure for such a reduction is
carried out via the integration through the plate thickness of the 3-D equations of motion of electromag-
netically conducting media. To this end, the following equations are used:

(a) Kinematical equation

By virtue of the Kirchhoff hypothesis, the 3-D displacement field results under the form

Vx = Uy — X3V34, V3 = U3 (203., b)
where v, = v,(x1, X2, 1) and v3(xy, x», ) denote the 2-D displacement quantities. Consistent with (20), the 3-D
Lagrangian strain components, Eq. (9), yield

2ep = Eap + X3k (21a,b)

where ¢,5 and k,5 denote the 2-D strain measures that consistent to von Kdrman’s non-linear kinematic
approximation are expressed as

26,8 = Vyp + Upo + V34038, Kup = —Usyp (22a,b)

(b) Equations of motion

Restricting in the equations of motion (4) the geometric nonlinearities to those involving the transverse
displacement v3 and its gradients, only, these equations become (see Librescu, 1975; Librescu et al., 2004;
Hutter and Pao, 1974):

S+ 812+ 8133+ /i — (pob1 — pox3ts1) =0 (23a)
Sar1 + 802+ 832+ f2 = (poba — poiiz2) =0 (23b)
(S13 + S1vs) 4+ S12032) | + (823 + Sa1v31 + Snv32) 5

+ (833 + S31031 + S32032) 5 + f3 — poiiz = 0 (23¢)

Appropriate integration of Eqs. (23a—c) through the wall thickness, in the sense of
ffh(23a;23b,23c) dx; =0 and ffh(23a;23b)x3 dx; = 0, results in five 2-D equations of motion. Having in
view the hproper definition of 2-D stress resultants N,z(= ffh Supdxs), 0, (= ffh S.3dx3), and stress-couples
M4(= ffh S.px3dxs3), and carrying out the exact elimination of transverse shear stress resultants Q,; among
the last three resulting equations of motion yields:

A

Niia +N12,2+ST3—SI3+/ JSidxs = 2pyhi (24a)
“h
h

Noig 4+ Nap + 85, — S5 + / Jodxs = 2phi, (24b)
—h

M +2M a0 + My + Nivs g + Naovsn + 2N, 0312
+ (N1 4+ Niap)vsg + (Noap + Napg)vso + (S5 — S33)
+ (S3+1 — 8331 + (S5 — S3)v30 + h[S3+1 + S3_1],1 + h[S3+2 + Sa_z]‘z

0 +h o [t +h
+ o / Sixsdxs + — / JSoxsdxs + / S3dxs = 2pyis (24c¢)
X1 J_n 0x» —h —h
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In these equations, S; = Ssil. S5 = Sai|_,. Moreover, in the derivation of the 2-D equations of motion,
rotatory inertia terms have been discarded.
For the sake of completion, the expressions of transverse shear stress resultants are also displayed
+h

Q13 = MlLl + M1272 —+ /’l(S;—I + S3_1) —+ f1X3 dX3 = 0, (253)
—h
+h

Q23 = M21‘1 +M22‘2 + h(S;z + S;z) + fz)C3 dX3 =0 (25b)

At this point, it should be remarked that as a result of the incorporation of geometric nonlinearities, the
bending-stretching structural coupling is involved in the resulting governing equations. As it will become
evident later, the bending-stretching coupling occurs also via Lorentz’s ponderomotive forces f; intervening
in Egs. (24a—) in an integral form. Herein

N“ A vA 0 &1
sz = |v4 A 0 & (263)
N]z 0 0 I%A E12
M“ D vD 0 K11
M22 =|vD D 0 Ko (26b)
M, 0 0 %D K12
where,
A=2Eh/(1 —+v*) and D =2ER/3(1 —?) (26¢,d)

denote the stretching and bending stiffness, respectively.

(c) Explicit Expressions of h; and 2-D Ponderomotive Forces and Couples

From (16b), (19), in conjunction with Egs. (21) and the representation of components of Hy as consid-
ered to exhibit a linear variation across the wall thickness, in the sense of

0 1
Ho = Hy +x3Hp (27a)
or in component form as
(Ho); = (HO) +x3(H0) i=123 (27b)

the components A x1, x5, x3,¢) of the disturbance magnetic field h result as

0 1
hi(x1,x2,x3,8) = b (xl,xz, 1) + x3hi(x1, %2, 1) + 0(x3) (27¢c)

0
Herein, 7;(x,x,,t) and h;(x,x,,¢) are

0 1

0 1
= *(H0)3”3,2 — (Ho),vs

( )

( )

e ) = (Ho)vs), + ((1(')10)2“3),2 -
( ) = —[N(s)], —2(H0) V31

( )=—=IN(®)], - 2(H0) V32

3( )= [(1 Hy),v3 + (HO) vsal; + [(13’0)303,2 + (1110)203],2

)1v32 — (HO) U3

mo

where N(v;) = (
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From these expressions it is readily seen that the expressions of ;)zz and llzz results from ;)z | and }111, respec-
tively, simply replacing the indices 1 — 2, and reciprocally 2 < 1. This way of expressing some of the forth-
coming equations in terms of their counterparts, explicitly expressed, will be used next, whenever possible.

As concerns the expressions of 2-D Lorentz ponderomotive and magnetizable related forces, these are
expressed as:

h ~
J R NN

+ 2hﬂ{ [(130)3 + 23} [llu - ;m] - [(lgo)ﬁ/oh](zu - 21,2)} +0(k)

h ~
[ o =R (00 - Go) b

+ 2},,1{—[(1(-)10)3 s — 23,2] + [(Igo)ﬁzl](zu - ;'1,2)} +0(#?) (29a-d)

I ~
[ fran =200y - Gah

+ Zhﬂ{[(lo-lo)2 + ;)lz] [23,2 — }llz] + [(10‘10)1+21][23¢1 - }111}} +0(k)

h M 0 0 0 1 1 0 00 0 01 5
[ s = 2= ] i)+ G+ G b+l + G} + 008
—h

(i=1,2,3 a=1,2)

The ponderomotive couples of electromagnetic origin ff W11+ f22]x3 dxs are neglected, because they are
of the order 0(/?).

The contribution of terms of order 0(4%) in both ponderomotive forces and the ponderomotive couples
(underlined by an undulated line) that contain only such terms, have been discarded.

It should be noticed that these expressions are general, in the sense that are valid in the case of the
existence of the three components (Hy); and (Jp); of the external magnetic field Hy, and the conduction cur-
rent—density vector, respectively. For special cases of practical importance, the above expressions of 2-D
ponderomotive forces and of the induced magnetic field can dramatically be simplified.

6. The governing equation system expressed in terms of displacements

The governing equation system can be obtained from Eqs. (24a—c) by expressing the stress resultants and
stress couples in terms of displacement quantities. It is given by

1—v 1+v 1+v 1—v

U+ U120+ U212+ 0310311 + V320312 +

V310322

2 2
l h
+Z l:STS_SH—’—/ f]dX3—2phlJl:| :0,
—h
v +1_vv +1+vv “+ 03,0 +1+vv v +1_vv v
2,22 3 2,11 5 1,12 320322 3 3,103,12 3 320311

1 +h .
T {S% -85 +/ Sfadx; 2,0}!02} =0
—h
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0 1 1 1—v
DAév3 —Aa—x] {1)3)1 |:12111 +§(l)3>1 )2 +v <1)272 +§(U312)2>:| — TU3‘2(UL2 +0y1+ U3‘1U3‘2)}
0 1 1 1—v ..
_Aa_xz {0342 [Uz,z +§(Us42)2 +v (01,1 +§(Uz,1)2>} - Tv3’1 (v124v21+ 03,10372)} +2phis

(30a—)

B 0 _ 0 _ _ _
:S; -85 +h6_x1(ST3 +513) +h6_x2(S;3 +85) + (SE —853)v31 + (S; —833)v32

+h afl af‘z
v/, [““(aﬂanﬂ““

In this form, the governing system is similar to that obtained in Librescu et al. (2004). In Eq. (30c), Ay is the
2-D Laplace operator.

7. Determination of transverse and shear magnetic tractions on the bounding surfaces of the plate

In the governing equation (29) there are a number of terms such as S|, + Sp;; S5; £ S5; S3; — S3. etc.,
that should be evaluated on the bounding surfaces of the plate where the conditions expressed by (13)
should be fulfilled.

First of all, one should remind that from (12b,c), the following continuity conditions hold valid:

(e>(BO)3 = (30)3 = ﬂ(H0)3
(e(Ho); = (Ho); = (¢(Bo), (31la—c)
(e)(HO)z = (Ho)z = (6)(30)2

In addition, Egs. (30) in conjunction with (27) yield
00 -1
oh —h = *Tke)(BO)sUﬂ,l +(Jo) /e

0 0 1 — 1
hs = Iy = =5 [ (Bo)yus] 5 + (V) /e (32a-¢)

Q

0 0
(hs — fthy = —(i— 1)((Ho),vs,1 + (Ho),v32)

Moreover, having in view that
S1+3 855 = [(e)TE - T1+3] + [(e)Tfs - TB]
Sy £8y =0T — T5] £ [0 T5 — Tasl (33a—<)
S5 =Su=loT5s—Th] = 0T — Txl

in conjunction with Egs. (11) and (26), one obtain their explicit expressions as

0 0 1 1
Si3— S = [i(Ho)s + fths + L(US)H(e>h1+ — @]+ hli(Ho)s + fihs

1

M) ][k i )] — 2h[(Ho) sy + A(Fo) ]

— Dhfihihs + k) + 20{(Ho) L(vy) + (), M(vs)],  (1=22)
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S5 — Sy = 2h[jihs + L(3)][ths + M(03)] + 2h{f(Flo)s[jihs + M(v5)

(o) liths + L(o3)]} — (Ho)y (ki — whi)

1 0
—h(Ho),(0h! + @h) = (Ho)y(0hy — ©h3)

1
— h(Ho)y(0h3 + @hy) — 0.5{(h})*

0 1 1 0
— (@hy )+ (@h3)’ = (0hy)*} + 2h[(Ho) by + (Ho), ] (34a—c)
0 1 1 0 01 01
+ Zh[(HO)zhz + (Ho)zhz] + 2h[hihy + hyhy),

0 0 1
Sty 4 813 = [(Ho)s + fths + L(v3)](/h + @hy) + h[i(Ho),

1 0 0 00
+ fihy + M(3)|(0hy = @hy) = 20[(Ho)sh + ks (122)

— DR A(Hy)ghn -+ hubs] + 2[(Ho), L(vs) + F2(Ho) M(v3)].

The notation (1 2 2) accompanying Egs. (33a) and (33b) indicates that from the respective expressions, the
ones corresponding to S3; — S5; and S3; + S5; can be obtained, respectively, by replacing the index 1 by 2,
and 2 by 1.

In these expressions there are the notations

L(vs) = —(ft— D[(Ho),v31 + (Ho)yvs3]

M(vs) = —(jt — 1)[(1;0)103.,1 + (1&10)2”3,2]

From Egs. (33) is readily seen that the quantities (4, £ )k, ), (¢ = 1,2), should still be determined. This
issue will be addressed next.

(35a,b)

8. Determination of terms (), * k)

In order to determine the previously indicated terms, use should be made of the equations
curlh, =0 and divh, =0 (36a,b)
As is clearly seen, h, fulfilling identically equation (36a), can be expressed in terms of the potential function
P(x1,x2,x3,1) as
h, = V¢ (37)
where, by virtue of (36b), ¢ has to fulfil the Laplace equation
Vi =0 (38)

where V> = A, V and A being the nabla and the Laplacian 3-D operators, respectively.

Its solution should be determined in conjunction with the conditions on the bounding surfaces of the
plate and with those at infinity, where the disturbances should damp out.

It is readily seen that the solution of this problem involves the solution of a nonhomogeneous Neuman’s
boundary value problem, namely
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ag{)/@n = (e)l’ln (39)
where 7 is the outward normal to the surface of the plate.

0 1
In the present case, when (H ), and (H,), are spatially uniform, having in view Egs. (27f), (30) and (31c¢),
we have

0 0 1 1 0
@hs = (Ho)vs1 + (Ho)y032 +x3[(Ho)v31 + (Ho)y032 + ii(Ho)3A003] (= hq + X3h3p) (40)

As a result, and in conjunction with (38), the potential function ¢ should be determined as to fulfil the
condition
09
— = (e)hg(E h3, +X3h3b) at x3 = +h (41)
aX3
For the sake of convenience, the problem is split into two parts:
Determine ¢ = ¢ + ¢», fulfilling the conditions A¢; =0 and A¢, =0, subjected to conditions

% = hs,, % = =+hhy, for x3 = +h and |X1| < (42371’))
6x3 6x3

and
0 0
9 0 and 2220 forxs = +h and u| > 4 (43c,d)
6x3 6X3

as well as to the condition at infinity
¢(x%+x§+x§)]/2~>oo = 0 (43@)
From (39) it readily results that the following relations are fulfilled by the two potentials:
¢1(x1,%2,%3) = —¢py (x1, X2 — X3) (44a)

and
$a(x1,x2,%3) = Py (x1,%2 — X3) (44b)

From here it appears that one can solve the problem in its full complexity. However, in order to be able to
get results shedding light on the implications of the magnetic field and electrical current on the behavior of
the plate, the problem will be rendered less intricate.

9. Case of the rectangular plate strip. Governing equations

We will confine our attention to the case of a rectangular plate strip. Suppose that the plate is infinitely
long in the x,-direction and has a finite dimension 2¢; along the x;-direction.

We also assume that the external magnetic field Hy and the conduction current density vector J are de-
fined in terms of the single component (Hy);, and (Jy),, i.e. Hy — (Hy);i;, and Jy — (Jy)-i, where i; and i,
are the unit vectors associated with the coordinates x; and x», respectively (see Fig. 1).

In such cases, all derivatives with respect to x, are zero, and the plate bends into a cylindrical surface.

For the present case, from the Maxwell equations within the domain of the plate strip

1
curlHy = %Jo

. (45a,b)
div H() =0
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ke 2, —

Fig. 1. Plate carrying an electric current and immersed in a magnetic field

and in the vacuum
1
curl(e> H() =0
1

diV(E) H() =0
and invoking the boundary conditions (12 b-c), in the reference state configuration, one obtains

H() = X3J0/Ci1.
As a result, Eq. (27a) can be represented as

(Ho), = (Ho)y +x2(Ho)y (H), =0 (1=2.3)
where (Ho), = (Hy)y;  (Ho), :*(J—E)Z(E%) (46d, )

and
1

0 1 0 1
hy=—(Hy)v3; hho=h=h=0
01 0( 0)1U3 12 11 2 (46f—i)
hy = (Ho),v31;  hs = (Ho), 031
Based on (42) and paralleling the procedure used by Librescu et al. (2004) determination of
(@i £ (hy) reduces to the solution of a double dual integral equation system. It solution yield

ot ot
h3a S], dS]

4
(e)hl (xl,O, t) = _(e)h1 ()C], —O, t) ; / o
m/ﬁ —xi (47a,b)

th(Sb )dsl

}ll x1,0 = }ll X —0 h
e U, ¢ e ’ t
()1(1 ) ()1(1 ) 77//5131 :

0" 0~
where for the present case (), & (o)h, = 0.
+¢; to be immovable, i.e. v; (¢1,f) =vi(—¢;,t) =0, and paralleling the

Assuming the edges x; =
procedure developed in Librescu (1977), the three governing equation (29) are reduced to a single one

namely,
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o'y oy 3oty [T o\’
AU B R By B LU A I
o e 4w /_1 <6s> :
300N\*[h ", 5 2 0 %y n\’ 2 A
VI g ) 2um g 2000 B2 o (2 — 1y A g (G
() {el o+ 22w 1 5 2() G- nm e ()
2 62’7
>< {3(u— n(3) +sn@+o.5Rl<n>Rz<n>}
= ps(x1,1) (48)

This is a nonlinear integral-differential equation whose solution has to be determined in conjunction with
the boundary condition on x; = £/;. In its expression the following dimensionless parameters have been
included:

1/2
E 2
XEXI/EI; TEth, where QO = L
3po(1 _vz)g‘f

= [ ] -y (490-1)
H* = (o), (1 = )/E = [Ro/cP(1 =) /E: 1y = s/
In addition
21 V1 =52 o
Ri(n)=—— - p—— —Sds
TA1—x /_1 0 49g.1)

o [
2 U

R =
2(1) n J, s—x0n

0 1
From (49) it clearly appears that H and H are measures of the intensity of the magnetic field and of the
electrical current, respectively.

10. Discretization of governing equation. Natural frequency and instability conditions

In order to discretize the governing Eq. (48), Galerkin’s method is applied. To this end, we use the fol-
lowing approximate representation of y

n(x,t) = y(x){(r) (50)

where /(x) is chosen as to fulfil all the boundary conditions, while {(t) is an unknown function, playing the
role of generalized coordinate.
By virtue of (50) and application of Galerkin’s method, Eq. (48) reduces to a nonlinear ordinary differ-
ential equation
dZ
dTg+b1¢+bzcz+bgc3:0 (51)
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Its coefficients are as follows:

b= {/ wd—g(%)/ [,ﬁ H2Ru) + 20— 1) B ()
+2(,}’1)2 H2 /() — 2 1) B (Z)Zw’%x)]w(x)dx}//i Vdx

(52a—c)
2w wa @ [ vea
m=iti (1) [ [ 0w w o Rk |pwes [ v
In these equations
R =2 Vi-s dlﬁ
= 1—x2/ — (53a,b)

Rzm:%/ LYy

while the primes denote derivatives with respect to the x-coordinate.

Eq. (51) governs the motion of the electrically carrying plate in a magnetic field.

In the case of simply supported plate on x = +1, y(+1) = yy”(+1), these conditions are fulfilled by con-
sidering /(x) = cos(nx/2). In this case, the coefficients b; become

14 Z1 ’ 02 ~ h ~ El ! 12
) 1 (54a—c)
[1 0 1 37'64
b2—7'E( 1)(h> HH, b}Z?
Herein f = — 5 f IR Ri(¥) - ¥ds/ ffll ?ds ~ 0.5. In the case of an infinite plate in both x; and x directions,

it can readily be seen that p=1.
Applying to Eq. (51) the multiple scales method, one obtains in a closed form the dimensionless nonlin-
ear frequency:

252
=w/(PQ)=V1+6 -0 [1 +A2‘W—+Z7(K2 - 02)] (55)

96(1 +&* — 0°)

where

o= 23— 5 /) 1= 1) B+ fin /20

K =27(8" 4+ 1)/(40y25° +-27), 1= 3 (56a—e)

5= 13‘\/3(ﬁ+ ﬂzh/el)(7f/‘2)3; 0—H (&)2 3=
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while 4 is the vibration amplitude.

From (55) it is seen that for 0 > K, the term igvolving the square of the amplitude becomes negative, and
as a result, a decrease of Q with the increase of H, and implicitly with the nonlinear deflection amplitude, is
experienced. |

For 0 < K, it clearly appears that the opposite behavior takes place, in the sense that the increase of H
and implicitly of the term related with the amplitude, is accompanied by the increase of Q.

From Eq. (55) it also becomes apparent that when 6 = K, the influence of geometrical nonlinearities on
the frequency 2 becomes immaterial.

From the linearized counterpart of Eq. (55), one can also infer that for

0=V1+6 (57a)

Q — 0, and as a result, the magnetoelastic system loses its stability by buckling, (or in a more general terms
by divergence). Eq. (57a) provides the condition yielding the expression of the critical electric current. In an
explicit form, the expression of the critical electric current is given by 6°.

< h(Jo), e (/lh)z 1 3
J=J =210 =10* () - —— V146 57b
'ToVE 0 3(i—1) (570)

From (57b) it clearly appears that the criticalovalue of the electrical current density increases with the in-
crease of the intensity of the magnetic field (H),.

11. Vibrational behavior about a mean static equilibrium configuration

Following the procedure used in a number of previous papers (see Librescu et al., 1996a,b; Librescu and
Lin, 1999), the unknown amplitude in Eq. (51) is represented as

() =T+ {() (58)

where { stands for the small vibration about a mean static equilibrium configuration described by {. In this
equation, the time dependent part { is considered small as compared to {, in the sense of

<] (59)

The equation for the static prebuckling and postbuckling equilibrium states are obtained by discarding
the inertia term in Eq. (51) and recognizing that the solution to the resulting equation is {. The equation for
small vibrations about the static equilibrium state is obtained by substituting Eq. (58) into Eq. (51) and
enforcing the smallness condition given by Eq. (59). The resulting equation of motion is

d¢ 5
dT(2T> + GC(’L’) =0 (60)
where
G=G({T) =360 + 26,0 + by (61)

Eq. (60) governs the small vibrations about a given static equilibrium state and is solved for synchronous
motion by expressing

(x) = Eexp(i0) (62)
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where ( is the constant amplitude. Substitution of Eq. (62) into (60) yields an eigenvalue problem given
by

UG- =0 (63)

In that case, Q in Eq. (63) is the unknown quantity to be determined and the corresponding amplitude ¢
is undetermined. The static equilibrium configuration for the problem at hand is obtained by solving the
static counterpart of the nonlinear algebraic equation i.e.

Z(bl + byl + b3zz) =0 (64)

12. A more formal description of the postbuckling response

It clearly appears from Eq. (64) that for H 0, in conjunction with Eq. (54), we have b, =0, and as a
result an even polynomial in { is obtained. As compared to the case corresponding to H # 0, implying that

b, # 0, for H = 0, beneficial implications on the postbuckling behavior will result.
From Eq. (63) we can obtain the following expression for the vibration frequency:

O =1+8—12J

(65)
where ko = 107*(¢,/4,)7\/3(it — 1). The expression given by (65) was obtained in the prebuckling range,
i.e., when the plate oscillates closely to the equilibrium point My + {{; =0, {, =0} and the condition

J<J = KoV 1+ 8% is satisfied corresponding to this case, there is a single frequency that depends on
the electric current J, given by Eq. (65) (for more details see Appendix A).

In the postbuckling range, when the plate oscillates closely to the equilibrium point My + {{; = (o1,
¢, =0} and the condition J > J, = =x,'V1+ 8% is satisfied,

Q) = 2025273 + z«/oax(;lj\/ BT 43k — 1= 83 +202T — 1 — &) (66)

In the postbuckling range, when the plate vibrates closely to the equilibrium point My, + {{; = (o1,
{, =0} and the condition J > J, = Ko V14 % is satisfied, there is the frequency given by

Q) = 225%20° )3 — 2y05x51j\/ RORT + 32T — 1= 8)/3+ 20T — 1 — &) (67)

When the parameter J increases from 0 till J =J, the plate vibrates closely to the equilibrium point
My+{{; =0, (=0} and the frequency of vibration is given by Eq. (65). Beyond the critical value
J =Ji, the plate vibrates closely to the points My, + {{; = (o1, (> =0} or My, = {{, = EouCz =0} and
the frequency of vibration is given by the formulae (66) or (67), respectively.

Thus we have the following scenarios for the vibration frequencies:

1—|—52—sz2 when J < J,
2 0 S
Q= { 5 o (68)
Q, whenJ >J,
or
5 1—|—52—K0J when J < J|
Im— 3 ~2 - (69)
Q, when J > J,
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Fig. 2. Static postbuckling behavior. Generic plot.
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Fig. 3. Dynamic counterpart of Fig. 2. Generic plot.
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Fig. 4. Postbuckling response of the plate-strip under an electrical current (¢ = 5, ju= 10*, H = 5).

When plate loses the static stablllty (i.e. whenJ =J, = =K' V1+ %), one can obtain from Egs. (66) and
(67) Q = 4y§52 257 /3= A and 92 = 0. In this case the plate experiences a snap-through at J = J,. With a
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Fig. 5. Frequency—electrical current interaction of plate-strip made up of soft ferromagnetic materials (a =5, i = 10*, H =5,
counterpart of Fig. 4—unstable branch).

2

Q 11
250 |
200
150
100

50

0 0.5 1 15 2 25

Fig. 6. Frequency—electrical current interaction of plate-strip made up of soft ferromagnetic materials (a =5, = 10*, H =5,
counterpart of Fig. 4—stable branch).
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Fig. 7. Postbuckling response of the plate-strip under an electrical current (a = 5, ji = 10*, H = 15).

further increase of the electrical current, i.e. of the parameter J, that is when J=J,=

K(j‘\/?;(l + 52)/(3)(2)252 +3), f)? = Qi = 0. In the interval of parameters J € [J,,J;] we have for the frequen-
cies €, <0 and Q; > 0.
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Fig. 8. Frequency—electrical current interaction of plate-strip made up of soft ferromagnetic materials (¢ = 5, jt = 10*, H = 15,
counterpart of Fig. 7—unstable branch).
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Fig. 9. Frequency-electrical current interaction of plate-strip made up of soft ferromagnetic materials (¢ = 5, 1 = 10*, H = 15,

counterpart of Fig. 7—stable branch).

[y

\ Unstable branch
\ <
\ 7'56/' Stable branch
\, /'
N 7 3
~. 7 748
S’
7.42
o Bifurcation point
-2 -1 0 1 ¢

Fig. 10. Postbuckling response of the plate-strip under an electrical current (a = 5, = 10°, H = 15).

In Figs. 2-15 it is summarized the buckling and postbuckling response of the plate immersed in a mag-
netic field and carrying an electric current.
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Fig. 11. Frequency-electrical current interaction of plate-strip made up of soft ferromagnetic materials (¢ = 5, 1 = 10°, H = 15,
counterpart of Fig. 10—unstable branch).
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Fig. 12. Frequency-electrical current interaction of plate-strip made up of soft ferromagnetic materials (¢ = 5, 1 = 10°, H = 15,
counterpart of Fig. 10—stable branch).

<l

\ Unstable branch
\
\ 6 .5 Stablebranch
. /
\, ‘
N\ »° 557
N -
S’
5 =
o Bifurcation point
4 ;) 0 > ¢

Fig. 13. Postbuckling response of the plate-strip under an electrical current (a = 4, ji=10*, H = 15).
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Fig. 14. Frequency—electrical current interaction of plate-strip made up of soft ferromagnetic materials (¢ = 4, jt = 10*, H = 15,
counterpart of Fig. 13—unstable branch).
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Fig. 15. Frequency—electrical current interaction of plate-strip made up of soft ferromagnetic materials (¢ =4, jt = 10*, H = 15,
counterpart of Fig. 13—stable branch).

13. Computational aspects

As postulated in Eq. (58), the solution of the Eq. (51) is expressed as the superposition of a static equi-
librium and of a small oscillatory state about the static solution. As a result, the solution of Eq. (51) begins
with the determination of the static equilibrium states over a given range of loading parameters, that is of

- 1 . 0
the electrical current J(= 10* H) and magnetic field, (H = 10° H). As clearly emerges from Eq. (64), the sta-
0

tic nonlinear response of the plate to the electrical current increase reveals that when H # 0, an asymmetric
behavior is experienced. In this sense, the flat panel exhibits a stable postbuckling behavior when the deflec-
tion ( is positive, and an unstable postbuckling behavior, when the deflection { is negative. In the latter
instance, a snap-through jump to an adjacent stable equilibrium configuration is experienced. A generic
plot emphasizing this behavior was provided in Fig. 2. This asymmetric postbuckling behavior was put into
evidence for a geometrically perfect structure. It can however, be anticipated, that in the case of a geomet-
rically imperfect panel, even for a very small negative imperfection its postbuckling behavior would be
unstable, and stable for a positive one.

One of the conclusions deserving attention is that in the context of the electromagnetic field interaction
and of the presence of an electric current, the flat plate can experience in the postbuckling range a snap-
through jump.

This constitutes a significant departure from the postbuckling behavior of plates subjected to purely
mechanical loads that experience only a benign nonlinear response, without the occurrence of the snap-
through (see Librescu and Stein, 1992). This result is really remarkable.
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In Fig. 2, J, denotes the dimensionless critical electrical current yielding the buckling bifurcation, while

J> denotes the dimensionless electrical current corresponding to the snapping jump of the plate in the con-
ditions indicated in Fig. 2. Its expression is given by

- hy, </1h) P+ 1=,
Jy= =(Z) (== /—=10 70
*TovE \4 7207+ 3\ -1 (70)

14. Numerical simulations

As it was pointed out in a series of previous papers (see e.g., Librescu et al., 1996a,b; Librescu and Lin,
1997, 1999), there is a close connection between the static postbuckling and the associated frequency-load
interaction. In this sense, for the problem at hand, the static postbuckling response reveals a stable behavior
for { > 0, and an unstable one, accompanied by a snap-through for { < 0. As it clearly appears from the
frequency—electrical current interaction counterpart, the buckling in terms of the electrical current occur-
ring at zero oscillating frequency, that is when Q* = 0, is identical to that appearing in the static case.

In this sense, see the generic plot Fig. 3 that represents the dynamic counterpart of Fig. 2. As it also ap-
pears from the frequency—electrical current interaction, there are two possible responses: (i) one stable,
characterized by the increase of Q* with the increase of the electrical current beyond the critical one,
and (ii) an unstable one, characterized by the jump of the natural frequency, once the electrical current
increases beyond the critical one.

The arrows indicate the snapping jumps thatooccur when J increases beyond J;, or decreases below J,. It

was already anticipated that, in the case when H = 0, such a snap-through is no longer possible. This trend
can be obtained directly from the previously displayed equations. A comparison of Figs. 4-6 on one hand,
and of Figs. 7-9, on the other hand, reveals that while the increase of H results in a larger electrical current
yielding the buckling bifurcation, at the same time, this is accompanied by an increase of the severity of the
snap-through buckling. In Figs. 4-13,

~ 0

H = (Hy),,-10* - V1 —v2/VE; a=)-10"h/¢,

hJ()\/ 1 —2
cVE

The comparison of Figs. 7-9, with Figs. 10-12, respectively, reveals a fact also emphasized by Ambartsum-
yan et al. (1977), according to which the critical electrical current J; diminishes with the increase of the mag-
netic permeability .. What is, however, very interesting, in spite of the fact that in the cases involved in these
figures, H is the same (=15), the decrease of /i yields a decrease of the intensity of the snap-through jump.

A similar conclusion concerns the magnetic field A. In this sense, as Figs. 4-6 and Figs. 7-9 reveal, the
increase of H yields a large increase of natural frequencies.

Finally, the comparison of Figs. 7-9 with Figs. 13-15 reveals that, as expected, the thicker plates feature
larger buckling bifurcations than the thinner ones. From the results not displayed here one should notice
the great influence of the increase of the permeability i on the increase of free vibration frequencies (i.e. of
the ones obtained when J = 0). 0

Notice that 7 and J cgn vary in the intervals H € [0,50] (H =50 when (H,), = 5.10* A/m);
J €10,300) (J =300 when (H,), = Joh/c ~ 10* A/m). In Figs. 5 and 6, as well as in the next ones Q;
and Qy are the reduced frequencies corresponding to unstable and stable branches, respectively.

The results obtained for the case H # 0, constitute a clear departure from the case of the standard post-
buckling of flat plates subjected to compressive/shear loads, in the sense that, in contrast to this case, a

J= 10*
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plate carrying electrical current and also exposed to a magnetic field can experience the snap-through
buckling.

In that context, as it was already mentioned, even a very small negative gecometric imperfection can trig-
ger the unstable path, while the positive one, the stable path.

15. Conclusions

In this article it was shown that a plate-strip carrying an electric current and exposed to a magnetic field
can buckle, and in addition can experience either a stable, or an unstable postbuckling behavior.

The same was shown to exist in the case of its dynamic behavior. It was also remarked, that this behavior
contrasts that exhibited by the similar structural configurations, that is by the flat panels subjected to only
mechanical in-plane compressive/shear loads, in the sense that the latter ones do not exhibit snap-through
buckling.
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Appendix A. The bifurcation set of the Eq. (51)

An inclusive chart of the bifurcation of the system expressed in state space form as represented by Eq.
(51) can be obtained. To this end
d¢
d—‘co ={
df, 2 2, 3.3
T = 1 — a 9 —
d‘L'() ( ‘|’5 9)C1—|—/05 C1+4C1

or

-,

(=X(©0); E=(5,07)€rR
In (A1)t
=0 2= 0=xoJ; ko= 1074(0/h)\/3—1
The bifurcation set associated with Eq. (A.1) corresponds to those value of zi for which the instability of

the system is obtained (see Andronov et al., 1973; Guckenheimer and Holmes, 1983).
From Eq. (A.1) it follows that for:

he following notations are used:

T <1302+ 1)/ (00> +3 =T
(corresponding in Fig. 16 to the area labelled as E)) the plate has one equilibrium fixed point M + {{; =0,
{» =0} (it is a center). The eigenvalues associated to the vector field 0Xj| u, linearized at these fixed points

are Aj, = +iy/1+06° — K%jz. At these fixed points the magnetoelastic system features harmonic vibrations
with frequency @ given by Eq. (595).
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Fig. 16. The bifurcation set in (3,.J).

For values of J in the interval J, = ;" \/3(52 + 1)/(0> +3) < J < 5"V 1 4 6* = J; (corresponding to
the domain labelled in Fig. 16 as E,), the plate has three equilibrium ﬁxed points as follows:

o My—+ {{; =0, {;, =0} (Center). The eigenvalues associated to the vector field aia| ilag,» linearized at these

fixed points are 4;, = £iy/1 + & — KOJ The frequency Q2 is given by Eq. (55).
o My + {{1 =01, {, =0} (Center). The eigenvalues associated to the vectorfield X il il g, linearized at

these fixed points are 1, = +idv/Dyv/—{,;.
o Mo+ {{1 =02, (o="0} (Saddle). The eigenvalues associated to the vectorfield 0X;l,,, . linearized at

these fixed points are 4, = +4v/Dy/—{;;.

In_ the above expressions (o = —2(podk0J +vVD/3; Lo = —2(pedx0] — VD/3;D = 28°k3]
3(;(332 + 6% — 1). Notice that in these cases {o; <0 and {p, <O0.

For J > KoV 1+ 6% = Jy, corresponding in Fig. 16 to the area designated by Ej, the plate has three
equilibrium fixed points as follows:

o My {{; =0,{, =0} (Saddle) with the eigenvalues 4,, = £/ —1 — &5 + K%jz;
o My, =+ {{1 = {o1,{>» = 0} (Center), with the eigenvalues A, = +idv/Dv/—{;;
o My, + {{1 = {02,{o = 0} (Center) with the eigenvalues 4, = +i4v/D\/Coy;

In these case {o; <0 and {yp, > 0.
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